Step * 2 1 1 1 1 1 2 1 of Lemma lattice-extend-dlwc-inc


1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. BoundedDistributiveLattice
5. eqL EqDecider(Point(L))
6. T ⟶ Point(L)
7. ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))
8. T
9. ∀[P:fset(T) ⟶ 𝔹]. ∀[s:fset(fset(T))].  uiff({x ∈ P[x]} {} ∈ fset(fset(T));¬(∃x:fset(T). (x ∈ s ∧ (↑P[x]))))
10. ∀x,y:Point(L).  Dec(x y ∈ Point(L))
11. ¬(0 (f x) ∈ Point(L))
12. fset(T)
13. c ∈ Cs[x]
14. c ⊆ {x}
15. ∀c:fset(T). (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))
16. 0 ∈ Point(L)
17. {} ∈ fset(T)
⊢ False
BY
(InstLemma_o (ioid Obid: lattice-0-equal-lattice-1-implies) [⌜L⌝;⌜x⌝]⋅ THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Cs  :  T  {}\mrightarrow{}  fset(fset(T))
4.  L  :  BoundedDistributiveLattice
5.  eqL  :  EqDecider(Point(L))
6.  f  :  T  {}\mrightarrow{}  Point(L)
7.  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))
8.  x  :  T
9.  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(fset(T))].
          uiff(\{x  \mmember{}  s  |  P[x]\}  =  \{\};\mneg{}(\mexists{}x:fset(T).  (x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x]))))
10.  \mforall{}x,y:Point(L).    Dec(x  =  y)
11.  \mneg{}(0  =  (f  x))
12.  c  :  fset(T)
13.  c  \mmember{}  Cs[x]
14.  c  \msubseteq{}  \{x\}
15.  \mforall{}c:fset(T).  (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))
16.  1  =  0
17.  c  =  \{\}
\mvdash{}  False


By


Latex:
(InstLemma\_o  (ioid  Obid:  lattice-0-equal-lattice-1-implies)  [\mkleeneopen{}L\mkleeneclose{};\mkleeneopen{}f  x\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index