Step * 2 1 1 1 1 1 of Lemma lattice-fset-meet-free-dl-inc


1. Type
2. eq EqDecider(T)
3. fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈  v ≤ x))  v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
12. T
13. a ∈ s
⊢ a ∈ x
BY
(InstLemma `lattice-fset-meet-is-glb` [⌜free-dist-lattice(T; eq)⌝;⌜deq-fset(deq-fset(eq))⌝]⋅ THENA Auto) }

1
1. Type
2. eq EqDecider(T)
3. fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈  v ≤ x))  v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
12. T
13. a ∈ s
14. (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ supposing x ∈ s)
∧ (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈  v ≤ x))  v ≤ /\(s)))
⊢ a ∈ x


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  s  :  fset(T)
4.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice(T;  eq)))
5.  \{s\}  \mmember{}  Point(free-dist-lattice(T;  eq))
6.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
7.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[v:Point(free-dist-lattice(T;  eq))].
          ((\mforall{}x:Point(free-dist-lattice(T;  eq)).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
8.  \{s\}  \mleq{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
9.  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))  \mmember{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
10.  x  :  fset(T)
11.  x  \mmember{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
12.  a  :  T
13.  a  \mmember{}  s
\mvdash{}  a  \mmember{}  x


By


Latex:
(InstLemma  `lattice-fset-meet-is-glb`  [\mkleeneopen{}free-dist-lattice(T;  eq)\mkleeneclose{};\mkleeneopen{}deq-fset(deq-fset(eq))\mkleeneclose{}]\mcdot{}
  THENA  Auto
  )




Home Index