Step
*
2
1
1
1
1
1
1
of Lemma
lattice-fset-meet-free-dl-inc
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. x : fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
12. a : T
13. a ∈ s
14. (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s)
∧ (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s)))
⊢ a ∈ x
BY
{ (InstHyp [⌜λx.free-dl-inc(x)"(s)⌝;⌜free-dl-inc(a)⌝] 6⋅
   THENA (Auto THEN (RWO "member-fset-image-iff" 0  THENA Auto) THEN Reduce 0 THEN D 0 THEN Auto)
   ) }
1
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. x : fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
12. a : T
13. a ∈ s
14. (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s)
∧ (∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s)))
15. /\(λx.free-dl-inc(x)"(s)) ≤ free-dl-inc(a)
⊢ a ∈ x
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  s  :  fset(T)
4.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice(T;  eq)))
5.  \{s\}  \mmember{}  Point(free-dist-lattice(T;  eq))
6.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
7.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[v:Point(free-dist-lattice(T;  eq))].
          ((\mforall{}x:Point(free-dist-lattice(T;  eq)).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
8.  \{s\}  \mleq{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
9.  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))  \mmember{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
10.  x  :  fset(T)
11.  x  \mmember{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
12.  a  :  T
13.  a  \mmember{}  s
14.  (\mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
              /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s)
\mwedge{}  (\mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[v:Point(free-dist-lattice(T;  eq))].
          ((\mforall{}x:Point(free-dist-lattice(T;  eq)).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s)))
\mvdash{}  a  \mmember{}  x
By
Latex:
(InstHyp  [\mkleeneopen{}\mlambda{}x.free-dl-inc(x)"(s)\mkleeneclose{};\mkleeneopen{}free-dl-inc(a)\mkleeneclose{}]  6\mcdot{}
  THENA  (Auto  THEN  (RWO  "member-fset-image-iff"  0    THENA  Auto)  THEN  Reduce  0  THEN  D  0  THEN  Auto)
  )
Home
Index