Step
*
1
1
1
1
2
1
1
1
2
of Lemma
lattice-meet-fset-join-distrib
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. ∀[a,b,c:Point(l)].  (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l))
4. u : Point(l)
5. v : Point(l) List
6. ∀bs:Point(l) List. (\/(v) ∧ \/(bs) = \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs))) ∈ Point(l))
7. bs : Point(l) List
8. \/(v) ∧ \/(bs) = \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs))) ∈ Point(l)
⊢ u ∧ \/(bs) ∨ \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs))) = \/(λb.u ∧ b"(bs) ⋃ f-union(eq;eq;v;a.λb.a ∧ b"(bs))) ∈ Point(l)
BY
{ (RWO "lattice-fset-join-union" 0 THEN Auto) }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. ∀[a,b,c:Point(l)].  (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l))
4. u : Point(l)
5. v : Point(l) List
6. ∀bs:Point(l) List. (\/(v) ∧ \/(bs) = \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs))) ∈ Point(l))
7. bs : Point(l) List
8. \/(v) ∧ \/(bs) = \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs))) ∈ Point(l)
⊢ u ∧ \/(bs) ∨ \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs)))
= \/(λb.u ∧ b"(bs)) ∨ \/(f-union(eq;eq;v;a.λb.a ∧ b"(bs)))
∈ Point(l)
Latex:
Latex:
1.  l  :  BoundedDistributiveLattice
2.  eq  :  EqDecider(Point(l))
3.  \mforall{}[a,b,c:Point(l)].    (a  \mwedge{}  b  \mvee{}  c  =  a  \mwedge{}  b  \mvee{}  a  \mwedge{}  c)
4.  u  :  Point(l)
5.  v  :  Point(l)  List
6.  \mforall{}bs:Point(l)  List.  (\mbackslash{}/(v)  \mwedge{}  \mbackslash{}/(bs)  =  \mbackslash{}/(f-union(eq;eq;v;a.\mlambda{}b.a  \mwedge{}  b"(bs))))
7.  bs  :  Point(l)  List
8.  \mbackslash{}/(v)  \mwedge{}  \mbackslash{}/(bs)  =  \mbackslash{}/(f-union(eq;eq;v;a.\mlambda{}b.a  \mwedge{}  b"(bs)))
\mvdash{}  u  \mwedge{}  \mbackslash{}/(bs)  \mvee{}  \mbackslash{}/(f-union(eq;eq;v;a.\mlambda{}b.a  \mwedge{}  b"(bs)))
=  \mbackslash{}/(\mlambda{}b.u  \mwedge{}  b"(bs)  \mcup{}  f-union(eq;eq;v;a.\mlambda{}b.a  \mwedge{}  b"(bs)))
By
Latex:
(RWO  "lattice-fset-join-union"  0  THEN  Auto)
Home
Index