Nuprl Lemma : vs-lift_wf2

[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[fs:formal-sum(K;S)].  (vs-lift(vs;f;fs) ∈ Point(vs))


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) vs-lift: vs-lift(vs;f;fs) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type crng: CRng
Definitions unfolded in proof :  all: x:A. B[x] prop: uimplies: supposing a and: P ∧ Q quotient: x,y:A//B[x; y] rng: Rng crng: CRng formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf vector-space_wf formal-sum_wf bfs-equiv_wf basic-formal-sum_wf equal-wf-base vs-lift-bfs-equiv vs-point_wf
Rules used in proof :  dependent_functionElimination universeEquality functionEquality cumulativity because_Cache productEquality independent_isectElimination equalitySymmetry equalityTransitivity productElimination pertypeElimination sqequalRule hypothesis hypothesisEquality rename setElimination thin isectElimination extract_by_obid introduction pointwiseFunctionalityForEquality sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[fs:formal-sum(K;S)].
    (vs-lift(vs;f;fs)  \mmember{}  Point(vs))



Date html generated: 2018_05_22-PM-09_46_10
Last ObjectModification: 2018_01_09-PM-00_26_32

Theory : linear!algebra


Home Index