Nuprl Lemma : vs-lift_wf2
∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[fs:formal-sum(K;S)].  (vs-lift(vs;f;fs) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S)
, 
vs-lift: vs-lift(vs;f;fs)
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
rng: Rng
, 
crng: CRng
, 
formal-sum: formal-sum(K;S)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
formal-sum_wf, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
equal-wf-base, 
vs-lift-bfs-equiv, 
vs-point_wf
Rules used in proof : 
dependent_functionElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
because_Cache, 
productEquality, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
pertypeElimination, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[fs:formal-sum(K;S)].
    (vs-lift(vs;f;fs)  \mmember{}  Point(vs))
Date html generated:
2018_05_22-PM-09_46_10
Last ObjectModification:
2018_01_09-PM-00_26_32
Theory : linear!algebra
Home
Index