Nuprl Lemma : vs-lift-bfs-equiv
∀[K:Rng]. ∀[S:Type]. ∀[as,bs:basic-formal-sum(K;S)].
  ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;as) = vs-lift(vs;f;bs) ∈ Point(vs)) 
  supposing bfs-equiv(K;S;as;bs)
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
vs-lift: vs-lift(vs;f;fs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
guard: {T}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
rng: Rng
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced : 
bfs-equiv_wf, 
bfs-reduce_wf, 
vs-lift-bfs-reduce, 
basic-formal-sum_wf, 
vs-lift_wf, 
vs-point_wf, 
equal_wf, 
bfs-equiv-implies
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaFormation, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hypothesis, 
rename, 
setElimination, 
lambdaEquality, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[as,bs:basic-formal-sum(K;S)].
    \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;as)  =  vs-lift(vs;f;bs)) 
    supposing  bfs-equiv(K;S;as;bs)
Date html generated:
2018_05_22-PM-09_45_10
Last ObjectModification:
2018_01_09-PM-01_00_25
Theory : linear!algebra
Home
Index