Nuprl Lemma : vs-lift-bfs-equiv

[K:Rng]. ∀[S:Type]. ∀[as,bs:basic-formal-sum(K;S)].
  ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;as) vs-lift(vs;f;bs) ∈ Point(vs)) 
  supposing bfs-equiv(K;S;as;bs)


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) vs-lift: vs-lift(vs;f;fs) basic-formal-sum: basic-formal-sum(K;S) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng
Definitions unfolded in proof :  guard: {T} prop: all: x:A. B[x] implies:  Q basic-formal-sum: basic-formal-sum(K;S) rng: Rng uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) cand: c∧ B refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced :  bfs-equiv_wf bfs-reduce_wf vs-lift-bfs-reduce basic-formal-sum_wf vs-lift_wf vs-point_wf equal_wf bfs-equiv-implies
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality functionEquality independent_isectElimination sqequalRule lambdaFormation independent_functionElimination applyEquality functionExtensionality cumulativity hypothesis rename setElimination lambdaEquality because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_functionElimination independent_pairFormation

Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[as,bs:basic-formal-sum(K;S)].
    \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;as)  =  vs-lift(vs;f;bs)) 
    supposing  bfs-equiv(K;S;as;bs)



Date html generated: 2018_05_22-PM-09_45_10
Last ObjectModification: 2018_01_09-PM-01_00_25

Theory : linear!algebra


Home Index