Nuprl Lemma : vs-map-image-iff-surject
∀[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B].  (∀b:Point(B). b ∈ Img(f) 
⇐⇒ Surj(Point(A);Point(B);f))
Proof
Definitions occuring in Statement : 
vs-map-image: b ∈ Img(f)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
surject: Surj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
surject: Surj(A;B;f)
, 
exists: ∃x:A. B[x]
, 
vs-map-image: b ∈ Img(f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
vs-map: A ⟶ B
Lemmas referenced : 
vs-point_wf, 
vs-map-image_wf, 
surject_wf, 
vs-map_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (\mforall{}b:Point(B).  b  \mmember{}  Img(f)  \mLeftarrow{}{}\mRightarrow{}  Surj(Point(A);Point(B);f))
Date html generated:
2019_10_31-AM-06_27_27
Last ObjectModification:
2019_08_21-PM-06_22_16
Theory : linear!algebra
Home
Index