Nuprl Lemma : vs-map-image_wf
∀[K:RngSig]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[b:Point(B)].  (b ∈ Img(f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
vs-map-image: b ∈ Img(f)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-map-image: b ∈ Img(f)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
vs-map: A ⟶ B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
vs-point_wf, 
equal_wf, 
vs-map_wf, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[b:Point(B)].    (b  \mmember{}  Img(f)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-06_27_20
Last ObjectModification:
2019_08_12-PM-00_40_20
Theory : linear!algebra
Home
Index