Step * 2 of Lemma vs-map-quotient-kernel


1. CRng
2. VectorSpace(K)
3. VectorSpace(K)
4. Point(A) ⟶ Point(B)
5. ∀u,v:Point(A).  ((f v) v ∈ Point(B))
6. ∀a:|K|. ∀u:Point(A).  ((f u) u ∈ Point(B))
7. f ∈ Point(A//z.z ∈ Ker(f)) ⟶ Point(B)
⊢ f ∈ A//z.z ∈ Ker(f) ⟶ B
BY
(MemTypeCD THEN Auto) }

1
1. CRng
2. VectorSpace(K)
3. VectorSpace(K)
4. Point(A) ⟶ Point(B)
5. ∀u,v:Point(A).  ((f v) v ∈ Point(B))
6. ∀a:|K|. ∀u:Point(A).  ((f u) u ∈ Point(B))
7. f ∈ Point(A//z.z ∈ Ker(f)) ⟶ Point(B)
8. Point(A//z.z ∈ Ker(f))
9. Point(A//z.z ∈ Ker(f))
⊢ (f v) v ∈ Point(B)

2
1. CRng
2. VectorSpace(K)
3. VectorSpace(K)
4. Point(A) ⟶ Point(B)
5. ∀u,v:Point(A).  ((f v) v ∈ Point(B))
6. ∀a:|K|. ∀u:Point(A).  ((f u) u ∈ Point(B))
7. f ∈ Point(A//z.z ∈ Ker(f)) ⟶ Point(B)
8. ∀u,v:Point(A//z.z ∈ Ker(f)).  ((f v) v ∈ Point(B))
9. |K|
10. Point(A//z.z ∈ Ker(f))
⊢ (f u) u ∈ Point(B)


Latex:


Latex:

1.  K  :  CRng
2.  A  :  VectorSpace(K)
3.  B  :  VectorSpace(K)
4.  f  :  Point(A)  {}\mrightarrow{}  Point(B)
5.  \mforall{}u,v:Point(A).    ((f  u  +  v)  =  f  u  +  f  v)
6.  \mforall{}a:|K|.  \mforall{}u:Point(A).    ((f  a  *  u)  =  a  *  f  u)
7.  f  \mmember{}  Point(A//z.z  \mmember{}  Ker(f))  {}\mrightarrow{}  Point(B)
\mvdash{}  f  \mmember{}  A//z.z  \mmember{}  Ker(f)  {}\mrightarrow{}  B


By


Latex:
(MemTypeCD  THEN  Auto)




Home Index