Nuprl Lemma : vs-map-quotient-kernel
∀[K:CRng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B].  (f ∈ A//z.z ∈ Ker(f) ⟶ B)
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-map-kernel: a ∈ Ker(f)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rng: Rng
, 
crng: CRng
, 
and: P ∧ Q
, 
vs-map: A ⟶ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
mk-vs: mk-vs, 
vs-point: Point(vs)
, 
vs-quotient: vs//z.P[z]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
vs-subtract: (x - y)
, 
vs-neg: -(x)
, 
vs-map-kernel: a ∈ Ker(f)
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
vs-add: x + y
, 
record-update: r[x := v]
, 
record-select: r.x
, 
vs-mul: a * x
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
vs-map_wf, 
vs-map-kernel-is-subspace, 
vs-map-kernel_wf, 
vs-quotient_wf, 
vs-mul_wf, 
rng_car_wf, 
vs-add_wf, 
vs-point_wf, 
equal_wf, 
all_wf, 
eq-mod-subspace_wf, 
equal-wf-base, 
rec_select_update_lemma, 
equal-iff-vs-subtract-is-0, 
iff_weakening_equal, 
vs-0_wf, 
vs-map-subtract, 
true_wf, 
squash_wf, 
subtype_rel_self, 
rng_sig_wf
Rules used in proof : 
dependent_functionElimination, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
productEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
voidEquality, 
voidElimination, 
independent_functionElimination, 
equalityElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
imageElimination, 
lambdaFormation
Latex:
\mforall{}[K:CRng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].    (f  \mmember{}  A//z.z  \mmember{}  Ker(f)  {}\mrightarrow{}  B)
Date html generated:
2018_05_22-PM-09_44_13
Last ObjectModification:
2018_01_09-PM-04_47_20
Theory : linear!algebra
Home
Index