Nuprl Lemma : equal-iff-vs-subtract-is-0

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x,y:Point(vs)].  (x y ∈ Point(vs) ⇐⇒ (x y) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-subtract: (x y) vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] iff: ⇐⇒ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] prop: rev_implies:  Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng squash: T implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] vs-subtract: (x y) vs-neg: -(x)
Lemmas referenced :  rng_wf vector-space_wf vs-point_wf vs-subtract-self iff_weakening_equal vs-0_wf vs-subtract_wf equal_wf vs-zero-add rng_sig_wf true_wf squash_wf vs-add_wf vs-grp_inv_assoc vs-add-comm vs-ac_1 rng_one_wf rng_minus_wf vs-mul_wf vs-mon_assoc
Rules used in proof :  isect_memberEquality axiomEquality dependent_functionElimination independent_pairEquality independent_functionElimination productElimination independent_isectElimination equalityTransitivity baseClosed imageMemberEquality sqequalRule natural_numberEquality equalitySymmetry hypothesisEquality rename setElimination levelHypothesis equalityUniverse hypothesis because_Cache isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality lambdaFormation independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeEquality hyp_replacement

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y:Point(vs)].    (x  =  y  \mLeftarrow{}{}\mRightarrow{}  (x  -  y)  =  0)



Date html generated: 2018_05_22-PM-09_42_59
Last ObjectModification: 2018_01_09-PM-02_27_58

Theory : linear!algebra


Home Index