Nuprl Lemma : vs-subtract_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[x,y:Point(vs)].  ((x - y) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-subtract: (x - y)
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
vs-subtract: (x - y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
vs-point_wf, 
rng_one_wf, 
rng_minus_wf, 
vs-mul_wf, 
vs-add_wf
Rules used in proof : 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y:Point(vs)].    ((x  -  y)  \mmember{}  Point(vs))
Date html generated:
2018_05_22-PM-09_42_53
Last ObjectModification:
2018_01_09-PM-02_06_37
Theory : linear!algebra
Home
Index