Nuprl Lemma : eq-mod-subspace_wf

[K:RngSig]. ∀[vs:VectorSpace(K)].  ∀P:Point(vs) ⟶ ℙ. ∀[x,y:Point(vs)].  (x mod (z.P[z]) ∈ ℙ)


Proof




Definitions occuring in Statement :  eq-mod-subspace: mod (z.P[z]) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] rng_sig: RngSig
Definitions unfolded in proof :  prop: so_apply: x[s] eq-mod-subspace: mod (z.P[z]) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-neg_wf vs-add_wf vs-point_wf
Rules used in proof :  dependent_functionElimination lambdaEquality universeEquality cumulativity functionEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality functionExtensionality applyEquality sqequalRule lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].    \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.  \mforall{}[x,y:Point(vs)].    (x  =  y  mod  (z.P[z])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-09_43_46
Last ObjectModification: 2018_01_09-PM-01_01_29

Theory : linear!algebra


Home Index