Nuprl Lemma : eq-mod-subspace_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)].  ∀P:Point(vs) ⟶ ℙ. ∀[x,y:Point(vs)].  (x = y mod (z.P[z]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eq-mod-subspace: x = y mod (z.P[z])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
rng_sig: RngSig
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s]
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
vs-neg_wf, 
vs-add_wf, 
vs-point_wf
Rules used in proof : 
dependent_functionElimination, 
lambdaEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].    \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.  \mforall{}[x,y:Point(vs)].    (x  =  y  mod  (z.P[z])  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-09_43_46
Last ObjectModification:
2018_01_09-PM-01_01_29
Theory : linear!algebra
Home
Index