Nuprl Lemma : vs-map-kernel_wf

[K:RngSig]. ∀[B:VectorSpace(K)]. ∀[T:Type]. ∀[f:T ⟶ Point(B)]. ∀[a:T].  (a ∈ Ker(f) ∈ ℙ)


Proof




Definitions occuring in Statement :  vs-map-kernel: a ∈ Ker(f) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] vs-map-kernel: a ∈ Ker(f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-0_wf vs-point_wf equal_wf
Rules used in proof :  dependent_functionElimination universeEquality functionEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality cumulativity functionExtensionality applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[B:VectorSpace(K)].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  Point(B)].  \mforall{}[a:T].    (a  \mmember{}  Ker(f)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-09_43_05
Last ObjectModification: 2018_01_09-PM-01_38_47

Theory : linear!algebra


Home Index