Nuprl Lemma : vs-map-kernel-is-subspace
∀[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B].  vs-subspace(K;A;a.a ∈ Ker(f))
Proof
Definitions occuring in Statement : 
vs-map-kernel: a ∈ Ker(f)
, 
vs-map: A ⟶ B
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-map-kernel: a ∈ Ker(f)
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
vs-map: A ⟶ B
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
vs-map-0, 
vs-point_wf, 
rng_car_wf, 
vs-map_wf, 
vector-space_wf, 
rng_wf, 
equal_wf, 
vs-zero-add, 
iff_weakening_equal, 
vs-zero-mul, 
squash_wf, 
true_wf, 
istype-universe, 
vs-add_wf, 
rng_sig_wf, 
subtype_rel_self, 
vs-mul_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
lambdaFormation_alt, 
setElimination, 
rename, 
productElimination, 
equalityIsType1, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
universeIsType, 
because_Cache, 
independent_pairEquality, 
axiomEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].    vs-subspace(K;A;a.a  \mmember{}  Ker(f))
Date html generated:
2019_10_31-AM-06_27_15
Last ObjectModification:
2018_11_08-PM-05_58_45
Theory : linear!algebra
Home
Index