Nuprl Lemma : vs-quotient_wf

[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  vs//z.P[z] ∈ VectorSpace(K) supposing vs-subspace(K;vs;z.P[z])


Proof




Definitions occuring in Statement :  vs-quotient: vs//z.P[z] vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] crng: CRng
Definitions unfolded in proof :  subtype_rel: A ⊆B prop: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] implies:  Q rng: Rng crng: CRng so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] vs-quotient: vs//z.P[z] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q quotient: x,y:A//B[x; y] infix_ap: y trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T cand: c∧ B
Lemmas referenced :  rng_car_wf vs-0_wf quotient_wf crng_wf vector-space_wf vs-subspace_wf eq-mod-subspace_wf subtype_quotient vs-point_wf eq-mod-subspace-equiv mk-vs_wf equal-wf-base vs-add_functionality_eq-mod vs-add_wf quotient-member-eq vs-mul_functionality_eq-mod vs-mul_wf vs-mul-add rng_plus_wf infix_ap_wf vs-mul-mul rng_times_wf vs-mul-zero rng_zero_wf vs-mul-one rng_one_wf vs-mul-linear true_wf squash_wf vs-add-comm iff_weakening_equal vs-mon_assoc equal_wf
Rules used in proof :  universeEquality cumulativity functionEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_isectElimination because_Cache independent_functionElimination hypothesis rename setElimination isectElimination functionExtensionality applyEquality lambdaEquality sqequalRule hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality productElimination pertypeElimination pointwiseFunctionalityForEquality independent_pairFormation baseClosed imageMemberEquality natural_numberEquality imageElimination lambdaFormation

Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    vs//z.P[z]  \mmember{}  VectorSpace(K)  supposing  vs-subspace(K;vs;z.P[z])



Date html generated: 2018_05_22-PM-09_44_04
Last ObjectModification: 2018_01_09-PM-01_00_51

Theory : linear!algebra


Home Index