Nuprl Lemma : vs-quotient_wf
∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  vs//z.P[z] ∈ VectorSpace(K) supposing vs-subspace(K;vs;z.P[z])
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
crng: CRng
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
rng: Rng
, 
crng: CRng
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
vs-quotient: vs//z.P[z]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
infix_ap: x f y
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
Lemmas referenced : 
rng_car_wf, 
vs-0_wf, 
quotient_wf, 
crng_wf, 
vector-space_wf, 
vs-subspace_wf, 
eq-mod-subspace_wf, 
subtype_quotient, 
vs-point_wf, 
eq-mod-subspace-equiv, 
mk-vs_wf, 
equal-wf-base, 
vs-add_functionality_eq-mod, 
vs-add_wf, 
quotient-member-eq, 
vs-mul_functionality_eq-mod, 
vs-mul_wf, 
vs-mul-add, 
rng_plus_wf, 
infix_ap_wf, 
vs-mul-mul, 
rng_times_wf, 
vs-mul-zero, 
rng_zero_wf, 
vs-mul-one, 
rng_one_wf, 
vs-mul-linear, 
true_wf, 
squash_wf, 
vs-add-comm, 
iff_weakening_equal, 
vs-mon_assoc, 
equal_wf
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productEquality, 
productElimination, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaFormation
Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    vs//z.P[z]  \mmember{}  VectorSpace(K)  supposing  vs-subspace(K;vs;z.P[z])
Date html generated:
2018_05_22-PM-09_44_04
Last ObjectModification:
2018_01_09-PM-01_00_51
Theory : linear!algebra
Home
Index