Nuprl Lemma : vs-mul_functionality_eq-mod
∀K:CRng. ∀vs:VectorSpace(K). ∀P:Point(vs) ⟶ ℙ.
  (vs-subspace(K;vs;z.P[z])
  
⇒ (∀x,x':Point(vs). ∀k,k':|K|.  (x = x' mod (z.P[z]) 
⇒ (k = k' ∈ |K|) 
⇒ k * x = k' * x' mod (z.P[z]))))
Proof
Definitions occuring in Statement : 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-mul: a * x
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
vs-neg: -(x)
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
Lemmas referenced : 
eq-mod-subspace_wf, 
rng_car_wf, 
vs-point_wf, 
vs-subspace_wf, 
vector-space_wf, 
crng_wf, 
vs-add_wf, 
vs-neg_wf, 
vs-mul_wf, 
rng_minus_wf, 
rng_one_wf, 
rng_times_wf, 
vs-mul-mul, 
iff_weakening_equal, 
crng_times_comm, 
vs-mul-linear, 
squash_wf, 
true_wf, 
rng_sig_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
universeEquality, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate
Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.
    (vs-subspace(K;vs;z.P[z])
    {}\mRightarrow{}  (\mforall{}x,x':Point(vs).  \mforall{}k,k':|K|.
                (x  =  x'  mod  (z.P[z])  {}\mRightarrow{}  (k  =  k')  {}\mRightarrow{}  k  *  x  =  k'  *  x'  mod  (z.P[z]))))
Date html generated:
2020_05_20-PM-01_18_13
Last ObjectModification:
2020_01_06-PM-01_23_29
Theory : linear!algebra
Home
Index