Nuprl Lemma : vs-add_functionality_eq-mod
∀K:Rng. ∀vs:VectorSpace(K). ∀P:Point(vs) ⟶ ℙ.
  (vs-subspace(K;vs;z.P[z])
  
⇒ (∀x,y,x',y':Point(vs).  (x = x' mod (z.P[z]) 
⇒ y = y' mod (z.P[z]) 
⇒ x + y = x' + y' mod (z.P[z]))))
Proof
Definitions occuring in Statement : 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rng: Rng
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
vs-add_wf, 
vs-neg_wf, 
vs-add-assoc, 
subtype_rel_self, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
vs-point_wf, 
vector-space_wf, 
rng_sig_wf, 
vs-neg-add2, 
vs-ac_1, 
vs-add-comm-nu, 
eq-mod-subspace_wf, 
vs-subspace_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
dependent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionIsType
Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).  \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.
    (vs-subspace(K;vs;z.P[z])
    {}\mRightarrow{}  (\mforall{}x,y,x',y':Point(vs).
                (x  =  x'  mod  (z.P[z])  {}\mRightarrow{}  y  =  y'  mod  (z.P[z])  {}\mRightarrow{}  x  +  y  =  x'  +  y'  mod  (z.P[z]))))
Date html generated:
2020_05_20-PM-01_18_09
Last ObjectModification:
2020_01_03-AM-00_51_00
Theory : linear!algebra
Home
Index