Nuprl Lemma : eq-mod-subspace-equiv
∀K:CRng. ∀vs:VectorSpace(K). ∀P:Point(vs) ⟶ ℙ.
  (vs-subspace(K;vs;z.P[z]) 
⇒ EquivRel(Point(vs);x,y.x = y mod (z.P[z])))
Proof
Definitions occuring in Statement : 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
crng: CRng
Definitions unfolded in proof : 
so_lambda: λ2x.t[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
rng: Rng
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
crng: CRng
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
refl: Refl(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
and: P ∧ Q
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
vs-neg: -(x)
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
vs-subspace_wf, 
vs-neg_wf, 
vs-add_wf, 
vs-point_wf, 
iff_weakening_equal, 
vs-add-neg, 
rng_one_wf, 
rng_minus_wf, 
vs-mul-linear, 
vs-neg-neg, 
rng_sig_wf, 
true_wf, 
squash_wf, 
vs-add-comm, 
equal_wf, 
iff_transitivity, 
vs-add-assoc, 
vs-add-cancel, 
vs-neg-add, 
vs-mon_ident
Rules used in proof : 
dependent_functionElimination, 
cumulativity, 
functionEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
universeEquality, 
lambdaEquality, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesisEquality, 
applyEquality, 
cut, 
independent_pairFormation, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination
Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.
    (vs-subspace(K;vs;z.P[z])  {}\mRightarrow{}  EquivRel(Point(vs);x,y.x  =  y  mod  (z.P[z])))
Date html generated:
2018_05_22-PM-09_43_58
Last ObjectModification:
2018_01_09-PM-01_01_00
Theory : linear!algebra
Home
Index