Nuprl Lemma : eq-mod-subspace-equiv

K:CRng. ∀vs:VectorSpace(K). ∀P:Point(vs) ⟶ ℙ.
  (vs-subspace(K;vs;z.P[z])  EquivRel(Point(vs);x,y.x mod (z.P[z])))


Proof




Definitions occuring in Statement :  eq-mod-subspace: mod (z.P[z]) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] crng: CRng
Definitions unfolded in proof :  so_lambda: λ2x.t[x] trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) cand: c∧ B rng: Rng rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B crng: CRng member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] refl: Refl(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) eq-mod-subspace: mod (z.P[z]) and: P ∧ Q vs-subspace: vs-subspace(K;vs;x.P[x]) implies:  Q all: x:A. B[x] vs-neg: -(x) true: True squash: T
Lemmas referenced :  crng_wf vector-space_wf vs-subspace_wf vs-neg_wf vs-add_wf vs-point_wf iff_weakening_equal vs-add-neg rng_one_wf rng_minus_wf vs-mul-linear vs-neg-neg rng_sig_wf true_wf squash_wf vs-add-comm equal_wf iff_transitivity vs-add-assoc vs-add-cancel vs-neg-add vs-mon_ident
Rules used in proof :  dependent_functionElimination cumulativity functionEquality functionExtensionality because_Cache independent_functionElimination independent_isectElimination equalitySymmetry equalityTransitivity universeEquality lambdaEquality hypothesis rename setElimination isectElimination extract_by_obid introduction hypothesisEquality applyEquality cut independent_pairFormation sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality natural_numberEquality imageElimination

Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}P:Point(vs)  {}\mrightarrow{}  \mBbbP{}.
    (vs-subspace(K;vs;z.P[z])  {}\mRightarrow{}  EquivRel(Point(vs);x,y.x  =  y  mod  (z.P[z])))



Date html generated: 2018_05_22-PM-09_43_58
Last ObjectModification: 2018_01_09-PM-01_01_00

Theory : linear!algebra


Home Index