Nuprl Lemma : vs-neg-add

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  (-(x) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-neg: -(x) vs-add: y vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng squash: T member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-add-neg iff_weakening_equal vs-0_wf vs-neg_wf vs-add-comm vs-point_wf equal_wf
Rules used in proof :  dependent_functionElimination axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality sqequalRule natural_numberEquality hypothesisEquality rename setElimination hypothesis because_Cache isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    (-(x)  +  x  =  0)



Date html generated: 2018_05_22-PM-09_41_06
Last ObjectModification: 2018_01_09-AM-10_32_36

Theory : linear!algebra


Home Index