Nuprl Lemma : vs-map-subtract
∀[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[x,y:Point(A)].  ((f (x - y)) = (f x - f y) ∈ Point(B))
Proof
Definitions occuring in Statement : 
vs-subtract: (x - y)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
true: True
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
vs-subtract: (x - y)
, 
and: P ∧ Q
, 
vs-map: A ⟶ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
vs-add_wf, 
rng_one_wf, 
rng_minus_wf, 
vs-mul_wf, 
rng_wf, 
vector-space_wf, 
vs-map_wf, 
vs-point_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_sig_wf, 
iff_weakening_equal
Rules used in proof : 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
hypothesis, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x,y:Point(A)].    ((f  (x  -  y))  =  (f  x  -  f  y))
Date html generated:
2018_05_22-PM-09_43_01
Last ObjectModification:
2018_01_09-PM-02_22_29
Theory : linear!algebra
Home
Index