Nuprl Lemma : vs-map-subtract

[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[x,y:Point(A)].  ((f (x y)) (f y) ∈ Point(B))


Proof




Definitions occuring in Statement :  vs-subtract: (x y) vs-map: A ⟶ B vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] apply: a equal: t ∈ T rng: Rng
Definitions unfolded in proof :  true: True all: x:A. B[x] rng: Rng vs-subtract: (x y) and: P ∧ Q vs-map: A ⟶ B member: t ∈ T uall: [x:A]. B[x] squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  vs-add_wf rng_one_wf rng_minus_wf vs-mul_wf rng_wf vector-space_wf vs-map_wf vs-point_wf equal_wf squash_wf true_wf rng_sig_wf iff_weakening_equal
Rules used in proof :  natural_numberEquality functionExtensionality applyEquality dependent_functionElimination because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality isectElimination extract_by_obid hypothesis productElimination rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x,y:Point(A)].    ((f  (x  -  y))  =  (f  x  -  f  y))



Date html generated: 2018_05_22-PM-09_43_01
Last ObjectModification: 2018_01_09-PM-02_22_29

Theory : linear!algebra


Home Index