Nuprl Lemma : p-pscm+-type

[H,K,A,B,tau:Top].  (((A)p)tau+ ((A)tau)p)


Proof




Definitions occuring in Statement :  pscm+: tau+ psc-fst: p pscm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] pscm-ap-type: (AF)s so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a pscm-ap: (s)x psc-fst: p pi1: fst(t) pscm+: tau+ pscm-adjoin: (s;u) pscm-comp: F compose: g
Lemmas referenced :  top_wf lifting-strict-spread strict4-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis because_Cache isect_memberFormation sqequalAxiom sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality baseClosed voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[H,K,A,B,tau:Top].    (((A)p)tau+  \msim{}  ((A)tau)p)



Date html generated: 2018_05_23-AM-08_14_13
Last ObjectModification: 2018_05_20-PM-09_53_21

Theory : presheaf!models!of!type!theory


Home Index