Nuprl Lemma : pcsm+-p-term
∀[C,H,K,t,B,tau:Top].  (((t)p)(tau+ o p;q) ~ ((t)tau+)p)
Proof
Definitions occuring in Statement : 
pscm+: tau+
, 
pscm-adjoin: (s;u)
, 
psc-snd: q
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
pscm-ap-term: (t)s
, 
pscm-ap-type: (AF)s
, 
pscm-comp: G o F
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
pscm-ap-term: (t)s
, 
pscm-ap: (s)x
, 
psc-fst: p
, 
pi1: fst(t)
, 
pscm-adjoin: (s;u)
, 
pscm-comp: G o F
, 
compose: f o g
, 
pscm+: tau+
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
psc-snd: q
, 
pi2: snd(t)
Lemmas referenced : 
lifting-strict-spread, 
strict4-spread, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
hypothesisEquality
Latex:
\mforall{}[C,H,K,t,B,tau:Top].    (((t)p)(tau+  o  p;q)  \msim{}  ((t)tau+)p)
Date html generated:
2018_05_23-AM-08_14_23
Last ObjectModification:
2018_05_20-PM-09_53_30
Theory : presheaf!models!of!type!theory
Home
Index