Nuprl Lemma : ps-sigma-unelim-p-type

[T:Top]. (((T)p)SigmaUnElim ((T)p)p)


Proof




Definitions occuring in Statement :  sigma-unelim-pscm: SigmaUnElim psc-fst: p pscm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sigma-unelim-pscm: SigmaUnElim psc-fst: p pscm-ap-type: (AF)s psc-adjoin-set: (v;u) pscm-ap: (s)x so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a pi1: fst(t)
Lemmas referenced :  top_wf lifting-strict-spread strict4-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalAxiom hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[T:Top].  (((T)p)SigmaUnElim  \msim{}  ((T)p)p)



Date html generated: 2018_05_23-AM-08_22_08
Last ObjectModification: 2018_05_20-PM-10_03_01

Theory : presheaf!models!of!type!theory


Home Index