Nuprl Lemma : cube-upper_wf
∀[k:ℕ]. ∀[c:real-cube(k)]. (c+ ∈ ℝ^k)
Proof
Definitions occuring in Statement :
cube-upper: c+
,
real-cube: real-cube(k)
,
real-vec: ℝ^n
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cube-upper: c+
,
real-cube: real-cube(k)
,
pi2: snd(t)
Lemmas referenced :
real-cube_wf,
istype-nat
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
extract_by_obid,
isectElimination,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[c:real-cube(k)]. (c+ \mmember{} \mBbbR{}\^{}k)
Date html generated:
2019_10_30-AM-11_31_09
Last ObjectModification:
2019_09_27-PM-01_21_44
Theory : real!vectors
Home
Index