Step
*
of Lemma
rless_ibs_property
∀x,y:ℝ.
((x < y
⇐⇒ ∃n:ℕ. ((rless_ibs(x;y) n) = 1 ∈ ℤ))
∧ (∀n:ℕ
(((rless_ibs(x;y) n) = 0 ∈ ℤ)
⇒ (((y < x) ∧ (∀m:ℕ. ((rless_ibs(x;y) m) = 0 ∈ ℤ))) ∨ (|x - y| ≤ (r(4)/r(n + 1)))))))
BY
{ (InstLemma `rless_ibs_wf` [] THEN RepeatFor 2 (ParallelLast') THEN All (RepUR ``rless_ibs``) THEN D 0) }
1
1. x : ℝ
2. y : ℝ
3. λn.if (∃m∈upto(n + 1).(x (m + 1)) + 4 <z y (m + 1))_b then 1 else 0 fi ∈ IBS
⊢ x < y
⇐⇒ ∃n:ℕ. (if (∃m∈upto(n + 1).(x (m + 1)) + 4 <z y (m + 1))_b then 1 else 0 fi = 1 ∈ ℤ)
2
1. x : ℝ
2. y : ℝ
3. λn.if (∃m∈upto(n + 1).(x (m + 1)) + 4 <z y (m + 1))_b then 1 else 0 fi ∈ IBS
⊢ ∀n:ℕ
((if (∃m∈upto(n + 1).(x (m + 1)) + 4 <z y (m + 1))_b then 1 else 0 fi = 0 ∈ ℤ)
⇒ (((y < x) ∧ (∀m:ℕ. (if (∃m∈upto(m + 1).(x (m + 1)) + 4 <z y (m + 1))_b then 1 else 0 fi = 0 ∈ ℤ)))
∨ (|x - y| ≤ (r(4)/r(n + 1)))))
Latex:
Latex:
\mforall{}x,y:\mBbbR{}.
((x < y \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. ((rless\_ibs(x;y) n) = 1))
\mwedge{} (\mforall{}n:\mBbbN{}
(((rless\_ibs(x;y) n) = 0)
{}\mRightarrow{} (((y < x) \mwedge{} (\mforall{}m:\mBbbN{}. ((rless\_ibs(x;y) m) = 0))) \mvee{} (|x - y| \mleq{} (r(4)/r(n + 1)))))))
By
Latex:
(InstLemma `rless\_ibs\_wf` []
THEN RepeatFor 2 (ParallelLast')
THEN All (RepUR ``rless\_ibs``)
THEN D 0)
Home
Index