Nuprl Lemma : rless_ibs_property
∀x,y:ℝ.
  ((x < y 
⇐⇒ ∃n:ℕ. ((rless_ibs(x;y) n) = 1 ∈ ℤ))
  ∧ (∀n:ℕ
       (((rless_ibs(x;y) n) = 0 ∈ ℤ)
       
⇒ (((y < x) ∧ (∀m:ℕ. ((rless_ibs(x;y) m) = 0 ∈ ℤ))) ∨ (|x - y| ≤ (r(4)/r(n + 1)))))))
Proof
Definitions occuring in Statement : 
rless_ibs: rless_ibs(x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rless_ibs: rless_ibs(x;y)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
less_than': less_than'(a;b)
Lemmas referenced : 
rless_ibs_wf, 
real_wf, 
nat_plus_wf, 
istype-less_than, 
istype-nat, 
istype-int, 
bl-exists_wf, 
int_seg_wf, 
upto_wf, 
lt_int_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
l_member_wf, 
rless-iff2, 
rless_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
eqtt_to_assert, 
assert-bl-exists, 
l_exists_functionality, 
assert_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
l_exists_wf, 
l_exists_iff, 
subtract-add-cancel, 
add-is-int-iff, 
false_wf, 
member_upto2, 
int_subtype_base, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
rational-approx-property, 
uimplies_transitivity, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
radd_wf, 
rational-approx_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
r-triangle-inequality2, 
radd_functionality_wrt_rleq, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
radd-preserves-rleq, 
rminus_wf, 
rmul_wf, 
rinv_wf2, 
itermMinus_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
implies-close-reals, 
absval_ubound, 
subtract-is-int-iff
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
independent_pairFormation, 
inhabitedIsType, 
universeIsType, 
productElimination, 
productIsType, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
equalityIstype, 
because_Cache, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
setIsType, 
equalityElimination, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
sqequalBase, 
promote_hyp, 
instantiate, 
cumulativity, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
intEquality, 
inrFormation_alt, 
inlFormation_alt, 
functionIsType, 
minusEquality
Latex:
\mforall{}x,y:\mBbbR{}.
    ((x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((rless\_ibs(x;y)  n)  =  1))
    \mwedge{}  (\mforall{}n:\mBbbN{}
              (((rless\_ibs(x;y)  n)  =  0)
              {}\mRightarrow{}  (((y  <  x)  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((rless\_ibs(x;y)  m)  =  0)))  \mvee{}  (|x  -  y|  \mleq{}  (r(4)/r(n  +  1)))))))
Date html generated:
2019_10_30-AM-10_15_59
Last ObjectModification:
2019_06_28-PM-01_55_45
Theory : real!vectors
Home
Index