Nuprl Lemma : rless_ibs_property

x,y:ℝ.
  ((x < ⇐⇒ ∃n:ℕ((rless_ibs(x;y) n) 1 ∈ ℤ))
  ∧ (∀n:ℕ
       (((rless_ibs(x;y) n) 0 ∈ ℤ)
        (((y < x) ∧ (∀m:ℕ((rless_ibs(x;y) m) 0 ∈ ℤ))) ∨ (|x y| ≤ (r(4)/r(n 1)))))))


Proof




Definitions occuring in Statement :  rless_ibs: rless_ibs(x;y) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q apply: a add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T rless_ibs: rless_ibs(x;y) and: P ∧ Q iff: ⇐⇒ Q implies:  Q exists: x:A. B[x] real: rev_implies:  Q nat: so_lambda: λ2x.t[x] nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) bnot: ¬bb assert: b cand: c∧ B true: True rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rneq: x ≠ y rdiv: (x/y) req_int_terms: t1 ≡ t2 rless: x < y sq_exists: x:A [B[x]] less_than': less_than'(a;b)
Lemmas referenced :  rless_ibs_wf real_wf nat_plus_wf istype-less_than istype-nat istype-int bl-exists_wf int_seg_wf upto_wf lt_int_wf int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf l_member_wf rless-iff2 rless_wf subtract_wf nat_plus_properties decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le eqtt_to_assert assert-bl-exists l_exists_functionality assert_wf less_than_wf iff_weakening_uiff assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot l_exists_wf l_exists_iff subtract-add-cancel add-is-int-iff false_wf member_upto2 int_subtype_base bool_cases iff_transitivity assert_of_bnot rational-approx-property uimplies_transitivity rleq_wf rabs_wf rsub_wf radd_wf rational-approx_wf rleq_functionality_wrt_implies rleq_weakening_equal r-triangle-inequality2 radd_functionality_wrt_rleq rdiv_wf int-to-real_wf rless-int rleq_functionality rabs-difference-symmetry req_weakening radd-preserves-rleq rminus_wf rmul_wf rinv_wf2 itermMinus_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma rless_transitivity2 rleq_weakening_rless rless_irreflexivity decidable__equal_int intformeq_wf int_formula_prop_eq_lemma implies-close-reals absval_ubound subtract-is-int-iff
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule independent_pairFormation inhabitedIsType universeIsType productElimination productIsType addEquality applyEquality setElimination rename natural_numberEquality equalityIstype because_Cache lambdaEquality_alt dependent_set_memberEquality_alt imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination setIsType equalityElimination baseClosed equalityTransitivity equalitySymmetry sqequalBase promote_hyp instantiate cumulativity pointwiseFunctionality baseApply closedConclusion intEquality inrFormation_alt inlFormation_alt functionIsType minusEquality

Latex:
\mforall{}x,y:\mBbbR{}.
    ((x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((rless\_ibs(x;y)  n)  =  1))
    \mwedge{}  (\mforall{}n:\mBbbN{}
              (((rless\_ibs(x;y)  n)  =  0)
              {}\mRightarrow{}  (((y  <  x)  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((rless\_ibs(x;y)  m)  =  0)))  \mvee{}  (|x  -  y|  \mleq{}  (r(4)/r(n  +  1)))))))



Date html generated: 2019_10_30-AM-10_15_59
Last ObjectModification: 2019_06_28-PM-01_55_45

Theory : real!vectors


Home Index