Nuprl Lemma : Cauchy-Schwarz

[n:ℕ]. ∀[x,y:ℝ^n].  (|x ⋅ y| ≤ (||x|| ||y||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x ⋅ y real-vec: ^n rleq: x ≤ y rabs: |x| rmul: b nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n so_apply: x[s] dot-product: x ⋅ y real-vec-norm: ||x||
Lemmas referenced :  Cauchy-Schwarz3 real-vec_wf nat_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|x  \mcdot{}  y|  \mleq{}  (||x||  *  ||y||))



Date html generated: 2016_05_18-AM-09_49_09
Last ObjectModification: 2015_12_27-PM-11_10_47

Theory : reals


Home Index