Nuprl Lemma : Cauchy-Schwarz
∀[n:ℕ]. ∀[x,y:ℝ^n].  (|x ⋅ y| ≤ (||x|| * ||y||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x ⋅ y
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rmul: a * b
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
dot-product: x ⋅ y
, 
real-vec-norm: ||x||
Lemmas referenced : 
Cauchy-Schwarz3, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|x  \mcdot{}  y|  \mleq{}  (||x||  *  ||y||))
Date html generated:
2016_05_18-AM-09_49_09
Last ObjectModification:
2015_12_27-PM-11_10_47
Theory : reals
Home
Index