Step
*
1
2
of Lemma
Rolles-theorem
1. a : ℝ
2. b : ℝ
3. a < b
4. f : [a, b] ⟶ℝ
5. f' : [a, b] ⟶ℝ
6. f'[x] continuous for x ∈ [a, b]
7. d(f[x])/dx = λx.f'[x] on [a, b]
8. f[a] = f[b]
9. e : ℝ
10. r0 < e
11. mc : |f'[x]| continuous for x ∈ [a, b]
12. icompact([a, b])
13. inf{|f'[x]||x ∈ [a, b]} ≤ r0
⊢ ∃x:ℝ. ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))
BY
{ ((InstLemma `range-inf-property` [⌜[a, b]⌝;⌜λ2x.|f'[x]|⌝;⌜mc⌝]⋅ THENA Auto)
THEN D (-1)
THEN (InstHyp [⌜e⌝] (-1)⋅ THENA Auto)
THEN RepeatFor 2 (D -1)) }
1
1. a : ℝ
2. b : ℝ
3. a < b
4. f : [a, b] ⟶ℝ
5. f' : [a, b] ⟶ℝ
6. f'[x] continuous for x ∈ [a, b]
7. d(f[x])/dx = λx.f'[x] on [a, b]
8. f[a] = f[b]
9. e : ℝ
10. r0 < e
11. mc : |f'[x]| continuous for x ∈ [a, b]
12. icompact([a, b])
13. inf{|f'[x]||x ∈ [a, b]} ≤ r0
14. lower-bound(|f'[x]|(x∈[a, b]);inf{|f'[x]||x ∈ [a, b]})
15. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ |f'[x]|(x∈[a, b])) ∧ (x < (inf{|f'[x]||x ∈ [a, b]} + e)))))
16. x : ℝ
17. x ∈ |f'[x]|(x∈[a, b])
18. x < (inf{|f'[x]||x ∈ [a, b]} + e)
⊢ ∃x:ℝ. ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a < b
4. f : [a, b] {}\mrightarrow{}\mBbbR{}
5. f' : [a, b] {}\mrightarrow{}\mBbbR{}
6. f'[x] continuous for x \mmember{} [a, b]
7. d(f[x])/dx = \mlambda{}x.f'[x] on [a, b]
8. f[a] = f[b]
9. e : \mBbbR{}
10. r0 < e
11. mc : |f'[x]| continuous for x \mmember{} [a, b]
12. icompact([a, b])
13. inf\{|f'[x]||x \mmember{} [a, b]\} \mleq{} r0
\mvdash{} \mexists{}x:\mBbbR{}. ((x \mmember{} [a, b]) \mwedge{} (|f'[x]| \mleq{} e))
By
Latex:
((InstLemma `range-inf-property` [\mkleeneopen{}[a, b]\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.|f'[x]|\mkleeneclose{};\mkleeneopen{}mc\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D (-1)
THEN (InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN RepeatFor 2 (D -1))
Home
Index