Step * 1 1 1 of Lemma Taylor-theorem


1. Interval
2. iproper(I)
3. : ℕ+
4. : ℕ2 ⟶ I ⟶ℝ
5. {a:ℝa ∈ I} 
6. {a:ℝa ∈ I} 
7. ∀k:ℕ2. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (F[k;x] F[k;y]))
8. finite-deriv-seq(I;n 1;i,x.F[i;x])
9. : ℝ
10. r0 < e
11. : ℝ
12. r0 < d
13. (|a b| < d)  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)
14. r0 < |a b|
⊢ a ≠ r0
BY
(RWO "rabs-difference-symmetry" (-1) THEN EAuto 1) }


Latex:


Latex:

1.  I  :  Interval
2.  iproper(I)
3.  n  :  \mBbbN{}\msupplus{}
4.  F  :  \mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}
5.  a  :  \{a:\mBbbR{}|  a  \mmember{}  I\} 
6.  b  :  \{a:\mBbbR{}|  a  \mmember{}  I\} 
7.  \mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y]))
8.  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
9.  e  :  \mBbbR{}
10.  r0  <  e
11.  d  :  \mBbbR{}
12.  r0  <  d
13.  (|a  -  b|  <  d)  {}\mRightarrow{}  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])|  \mleq{}  e)
14.  r0  <  |a  -  b|
\mvdash{}  b  -  a  \mneq{}  r0


By


Latex:
(RWO  "rabs-difference-symmetry"  (-1)  THEN  EAuto  1)




Home Index