Step
*
1
2
1
2
2
1
1
of Lemma
adjacent-full-partition-points
.....equality..... 
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. i : ℕ||p|| + 1
5. (¬0 < ||p||) 
⇒ r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;p)
6. 0 < ||p||
7. r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
8. ∀i:ℕ||p|| - 1. r0≤p[i + 1] - p[i]≤partition-mesh(I;p)
9. r0≤right-endpoint(I) - last(p)≤partition-mesh(I;p)
10. ¬(i = 0 ∈ ℤ)
11. ¬i < ||p||
⊢ p[i - 1] ~ last(p)
BY
{ (Unfold `last` 0 THEN EqCD THEN Auto') }
Latex:
Latex:
.....equality..... 
1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  i  :  \mBbbN{}||p||  +  1
5.  (\mneg{}0  <  ||p||)  {}\mRightarrow{}  r0\mleq{}right-endpoint(I)  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
6.  0  <  ||p||
7.  r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
8.  \mforall{}i:\mBbbN{}||p||  -  1.  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p)
9.  r0\mleq{}right-endpoint(I)  -  last(p)\mleq{}partition-mesh(I;p)
10.  \mneg{}(i  =  0)
11.  \mneg{}i  <  ||p||
\mvdash{}  p[i  -  1]  \msim{}  last(p)
By
Latex:
(Unfold  `last`  0  THEN  EqCD  THEN  Auto')
Home
Index