Nuprl Lemma : connectedness-main-lemma-ext

x:ℝ. ∀g:ℕ ⟶ ℝ.  (lim n→∞.g  (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝaccelerate(3;x)} (∃n:{ℕ(z (g n))})))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y accelerate: accelerate(k;f) real: nat: bool: 𝔹 all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T connectedness-main-lemma weak-continuity-principle-real-ext let: let
Lemmas referenced :  connectedness-main-lemma weak-continuity-principle-real-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.g  n  =  x  {}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}z:\{z:\mBbbR{}|  P  z  =  P  accelerate(3;x)\}  .  (\mexists{}n:\{\mBbbN{}|  (z  =  (g  n))\})))



Date html generated: 2017_10_03-AM-10_10_53
Last ObjectModification: 2017_09_13-PM-03_27_40

Theory : reals


Home Index