Nuprl Lemma : connectedness-main-lemma-ext
∀x:ℝ. ∀g:ℕ ⟶ ℝ.  (lim n→∞.g n = x 
⇒ (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝ| P z = P accelerate(3;x)} . (∃n:{ℕ| (z = (g n))})))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
req: x = y
, 
accelerate: accelerate(k;f)
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
connectedness-main-lemma, 
weak-continuity-principle-real-ext, 
let: let
Lemmas referenced : 
connectedness-main-lemma, 
weak-continuity-principle-real-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.g  n  =  x  {}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}z:\{z:\mBbbR{}|  P  z  =  P  accelerate(3;x)\}  .  (\mexists{}n:\{\mBbbN{}|  (z  =  (g  n))\})))
Date html generated:
2017_10_03-AM-10_10_53
Last ObjectModification:
2017_09_13-PM-03_27_40
Theory : reals
Home
Index