Step * 1 of Lemma derivative-rpolynomial


1. : ℕ1 ⟶ ℝ
2. Interval
⊢ d((Σi≤0. a_i x^i))/dx = λx.r0 on I
BY
((Assert ⌜d(a 0)/dx = λx.r0 on I⌝⋅ THEN Auto) THEN DerivativeFunctionality (-1) THEN Auto) }

1
1. : ℕ1 ⟶ ℝ
2. Interval
3. d(a 0)/dx = λx.r0 on I
4. {x:ℝx ∈ I} 
⊢ (a 0) i≤0. a_i x^i)


Latex:


Latex:

1.  a  :  \mBbbN{}0  +  1  {}\mrightarrow{}  \mBbbR{}
2.  I  :  Interval
\mvdash{}  d((\mSigma{}i\mleq{}0.  a\_i  *  x\^{}i))/dx  =  \mlambda{}x.r0  on  I


By


Latex:
((Assert  \mkleeneopen{}d(a  0)/dx  =  \mlambda{}x.r0  on  I\mkleeneclose{}\mcdot{}  THEN  Auto)  THEN  DerivativeFunctionality  (-1)  THEN  Auto)




Home Index