Nuprl Lemma : derivative-rpolynomial

n:ℕ. ∀a:ℕ1 ⟶ ℝ. ∀I:Interval.  d((Σi≤n. a_i x^i))/dx = λx.rpoly-deriv(n;a;x) on I


Proof




Definitions occuring in Statement :  rpoly-deriv: rpoly-deriv(n;a;x) derivative: d(f[x])/dx = λz.g[z] on I interval: Interval rpolynomial: i≤n. a_i x^i) real: int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  rpoly-deriv: rpoly-deriv(n;a;x) poly-deriv: poly-deriv(a) all: x:A. B[x] eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b ge: i ≥  r-ap: f(x) rfun-eq: rfun-eq(I;f;g) subtype_rel: A ⊆B true: True squash: T less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) nat_plus: + itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermAdd: left (+) right itermMultiply: left (*) right itermVar: vvar
Lemmas referenced :  interval_wf int_seg_wf real_wf all_wf subtract_wf derivative_wf rpolynomial_wf subtract-add-cancel decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf i-member_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int-to-real_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma rmul_wf add-member-int_seg2 decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf set_wf less_than_wf primrec-wf2 nat_properties add-subtract-cancel nat_wf derivative_functionality req_weakening subtype_rel_self subtype_rel_dep_function top_wf false_wf derivative-const rpolynomial_unroll req_functionality rnexp_zero_lemma rnexp_wf radd_wf int_seg_subtype derivative-add derivative-rnexp derivative-const-mul rmul-ac int_subtype_base decidable__equal_int real_term_polynomial itermMultiply_wf req-iff-rsub-is-0
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin introduction extract_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination natural_numberEquality addEquality rename setElimination hypothesisEquality because_Cache lambdaEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality applyEquality setEquality equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination baseClosed imageMemberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}I:Interval.    d((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i))/dx  =  \mlambda{}x.rpoly-deriv(n;a;x)  on  I



Date html generated: 2017_10_03-PM-00_16_26
Last ObjectModification: 2017_07_28-AM-08_38_33

Theory : reals


Home Index