Nuprl Lemma : rpolynomial_unroll

[n:ℕ]. ∀[a:ℕ1 ⟶ ℝ]. ∀[x:ℝ].
  ((Σi≤n. a_i x^i) if (n =z 0) then else ((a n) x^n) i≤1. a_i x^i) fi )


Proof




Definitions occuring in Statement :  rpolynomial: i≤n. a_i x^i) rnexp: x^k1 req: y rmul: b radd: b real: int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rpolynomial: i≤n. a_i x^i) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_upper: {i...} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rpolynomial_wf int_seg_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat le_wf nequal-le-implies zero-add radd_wf rmul_wf decidable__le intformle_wf int_formula_prop_le_lemma rnexp_wf subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma subtype_rel_dep_function real_wf int_seg_subtype subtract-add-cancel subtype_rel_self nat_wf rsum_wf int_seg_subtype_nat lt_int_wf assert_of_lt_int int-to-real_wf less_than_wf rnexp_zero_lemma rmul-one req_weakening req_functionality rsum_unroll radd_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality natural_numberEquality addEquality setElimination rename hypothesis because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp instantiate cumulativity independent_functionElimination hypothesis_subsumption functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].
    ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  if  (n  =\msubz{}  0)  then  a  0  else  ((a  n)  *  x\^{}n)  +  (\mSigma{}i\mleq{}n  -  1.  a\_i  *  x\^{}i)  fi  )



Date html generated: 2017_10_03-AM-08_58_11
Last ObjectModification: 2017_07_28-AM-07_37_59

Theory : reals


Home Index