Nuprl Lemma : rpolynomial_unroll
∀[n:ℕ]. ∀[a:ℕn + 1 ⟶ ℝ]. ∀[x:ℝ].
  ((Σi≤n. a_i * x^i) = if (n =z 0) then a 0 else ((a n) * x^n) + (Σi≤n - 1. a_i * x^i) fi )
Proof
Definitions occuring in Statement : 
rpolynomial: (Σi≤n. a_i * x^i)
, 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rpolynomial_wf, 
int_seg_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
false_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
le_wf, 
nequal-le-implies, 
zero-add, 
radd_wf, 
rmul_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rnexp_wf, 
subtract_wf, 
int_upper_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_rel_dep_function, 
real_wf, 
int_seg_subtype, 
subtract-add-cancel, 
subtype_rel_self, 
nat_wf, 
rsum_wf, 
int_seg_subtype_nat, 
lt_int_wf, 
assert_of_lt_int, 
int-to-real_wf, 
less_than_wf, 
rnexp_zero_lemma, 
rmul-one, 
req_weakening, 
req_functionality, 
rsum_unroll, 
radd_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
hypothesis_subsumption, 
functionEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].
    ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  if  (n  =\msubz{}  0)  then  a  0  else  ((a  n)  *  x\^{}n)  +  (\mSigma{}i\mleq{}n  -  1.  a\_i  *  x\^{}i)  fi  )
Date html generated:
2017_10_03-AM-08_58_11
Last ObjectModification:
2017_07_28-AM-07_37_59
Theory : reals
Home
Index