Nuprl Lemma : fun-converges-iff-cauchy

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.  n.f[n;x]↓ for x ∈ I) ⇐⇒ λn.f[n;x] is cauchy for x ∈ I)


Proof




Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) fun-cauchy: λn.f[n; x] is cauchy for x ∈ I rfun: I ⟶ℝ interval: Interval nat: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B prop: rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I fun-converges: λn.f[n; x]↓ for x ∈ I) exists: x:A. B[x] fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False nat: int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T cand: c∧ B sq_stable: SqStable(P) guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) icompact: icompact(I) i-nonvoid: i-nonvoid(I) cauchy: cauchy(n.x[n]) sq_exists: x:A [B[x]] ge: i ≥  req_int_terms: t1 ≡ t2 converges: x[n]↓ as n→∞ pi1: fst(t) converges-to: lim n→∞.x[n] y

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    (\mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)  \mLeftarrow{}{}\mRightarrow{}  \mlambda{}n.f[n;x]  is  cauchy  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-01_05_44
Last ObjectModification: 2020_01_08-PM-03_16_32

Theory : reals


Home Index