Step
*
2
of Lemma
fun-converges-iff-cauchy
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. λn.f[n;x] is cauchy for x ∈ I
⊢ λn.f[n;x]↓ for x ∈ I)
BY
{ (Assert ∀x:{x:ℝ| x ∈ I} . f[n;x]↓ as n→∞ BY
(Auto
THEN BLemma `converges-iff-cauchy`
THEN Auto
THEN (InstLemma `i-member-witness` [⌜I⌝;⌜x⌝]⋅ THENA Auto)
THEN D -1
THEN (With ⌜n⌝ (D 3)⋅
THENA (Auto THEN MemTypeCD THEN Auto THEN (D 0 THEN Auto) THEN With ⌜x⌝ (D 0)⋅ THEN Auto)
)
THEN Unfold `cauchy` 0
THEN ParallelLast
THEN D -1
THEN With ⌜N⌝ (D 0)⋅
THEN Auto)) }
1
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. λn.f[n;x] is cauchy for x ∈ I
4. ∀x:{x:ℝ| x ∈ I} . f[n;x]↓ as n→∞
⊢ λn.f[n;x]↓ for x ∈ I)
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. \mlambda{}n.f[n;x] is cauchy for x \mmember{} I
\mvdash{} \mlambda{}n.f[n;x]\mdownarrow{} for x \mmember{} I)
By
Latex:
(Assert \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . f[n;x]\mdownarrow{} as n\mrightarrow{}\minfty{} BY
(Auto
THEN BLemma `converges-iff-cauchy`
THEN Auto
THEN (InstLemma `i-member-witness` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN (With \mkleeneopen{}n\mkleeneclose{} (D 3)\mcdot{}
THENA (Auto
THEN MemTypeCD
THEN Auto
THEN (D 0 THEN Auto)
THEN With \mkleeneopen{}x\mkleeneclose{} (D 0)\mcdot{}
THEN Auto)
)
THEN Unfold `cauchy` 0
THEN ParallelLast
THEN D -1
THEN With \mkleeneopen{}N\mkleeneclose{} (D 0)\mcdot{}
THEN Auto))
Home
Index