Nuprl Lemma : iproper-roiint
∀x:ℝ. iproper((x, ∞))
Proof
Definitions occuring in Statement : 
roiint: (l, ∞), 
iproper: iproper(I), 
real: ℝ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
iproper: iproper(I), 
i-finite: i-finite(I), 
roiint: (l, ∞), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
false: False, 
member: t ∈ T, 
prop: ℙ
Lemmas referenced : 
true_wf, 
false_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
voidElimination, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}x:\mBbbR{}.  iproper((x,  \minfty{}))
Date html generated:
2016_10_26-AM-09_29_14
Last ObjectModification:
2016_08_27-AM-10_19_20
Theory : reals
Home
Index