Step
*
1
1
2
of Lemma
m-TB-sup-and-inf
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X ⟶ ℝ
5. UC(f:X ⟶ ℝ)
6. λr.∃x:X. (r = (f x)) ∈ Set(ℝ)
7. e : ℝ
8. r0 < e
9. k : ℕ+
10. (r1/r(k)) < e
11. n : ℕ+
12. xs : ℕn ⟶ f[X]
13. ∀x:f[X]. ∃i:ℕn. (|(fst(x)) - fst((xs i))| ≤ (r1/r(k)))
⊢ ∀x:ℝ. ((x ∈ λr.∃x:X. (r = (f x)))
⇒ (∃i:ℕn. (|x - fst((xs i))| < e)))
BY
{ ((RepUR ``rset-member`` 0 THEN Auto) THEN D -1 THEN RenameVar `r' (-3) THEN RenameVar `x' (-2)) }
1
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X ⟶ ℝ
5. UC(f:X ⟶ ℝ)
6. λr.∃x:X. (r = (f x)) ∈ Set(ℝ)
7. e : ℝ
8. r0 < e
9. k : ℕ+
10. (r1/r(k)) < e
11. n : ℕ+
12. xs : ℕn ⟶ f[X]
13. ∀x:f[X]. ∃i:ℕn. (|(fst(x)) - fst((xs i))| ≤ (r1/r(k)))
14. r : ℝ
15. x : X
16. r = (f x)
⊢ ∃i:ℕn. (|r - fst((xs i))| < e)
Latex:
Latex:
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X {}\mrightarrow{} \mBbbR{}
5. UC(f:X {}\mrightarrow{} \mBbbR{})
6. \mlambda{}r.\mexists{}x:X. (r = (f x)) \mmember{} Set(\mBbbR{})
7. e : \mBbbR{}
8. r0 < e
9. k : \mBbbN{}\msupplus{}
10. (r1/r(k)) < e
11. n : \mBbbN{}\msupplus{}
12. xs : \mBbbN{}n {}\mrightarrow{} f[X]
13. \mforall{}x:f[X]. \mexists{}i:\mBbbN{}n. (|(fst(x)) - fst((xs i))| \mleq{} (r1/r(k)))
\mvdash{} \mforall{}x:\mBbbR{}. ((x \mmember{} \mlambda{}r.\mexists{}x:X. (r = (f x))) {}\mRightarrow{} (\mexists{}i:\mBbbN{}n. (|x - fst((xs i))| < e)))
By
Latex:
((RepUR ``rset-member`` 0 THEN Auto) THEN D -1 THEN RenameVar `r' (-3) THEN RenameVar `x' (-2))
Home
Index