Step
*
1
1
2
2
of Lemma
proper-continuous-maps-compact
1. I : Interval
2. f : I ⟶ℝ
3. f[x] (proper)continuous for x ∈ I
4. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))}
5. i-approx(I;n) ⊆ I
6. mc : f[x] continuous for x ∈ i-approx(I;n)
7. inf(f[x](x∈i-approx(I;n))) = inf{f[x]|x ∈ i-approx(I;n)}
8. sup(f[x](x∈i-approx(I;n))) = sup{f[x]|x ∈ i-approx(I;n)}
9. m : ℕ+
10. r(-m) ≤ inf{f[x]|x ∈ i-approx(I;n)}
11. sup{f[x]|x ∈ i-approx(I;n)} ≤ r(m)
12. x : {x:ℝ| x ∈ i-approx(I;n)}
13. r(-m) ≤ f[x]
⊢ f[x] ≤ r(m)
BY
{ D 8 }
1
1. I : Interval
2. f : I ⟶ℝ
3. f[x] (proper)continuous for x ∈ I
4. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))}
5. i-approx(I;n) ⊆ I
6. mc : f[x] continuous for x ∈ i-approx(I;n)
7. inf(f[x](x∈i-approx(I;n))) = inf{f[x]|x ∈ i-approx(I;n)}
8. f[x](x∈i-approx(I;n)) ≤ sup{f[x]|x ∈ i-approx(I;n)}
9. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ f[x](x∈i-approx(I;n))) ∧ ((sup{f[x]|x ∈ i-approx(I;n)} - e) < x))))
10. m : ℕ+
11. r(-m) ≤ inf{f[x]|x ∈ i-approx(I;n)}
12. sup{f[x]|x ∈ i-approx(I;n)} ≤ r(m)
13. x : {x:ℝ| x ∈ i-approx(I;n)}
14. r(-m) ≤ f[x]
⊢ f[x] ≤ r(m)
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. f[x] (proper)continuous for x \mmember{} I
4. n : \{n:\mBbbN{}\msupplus{}| icompact(i-approx(I;n)) \mwedge{} iproper(i-approx(I;n))\}
5. i-approx(I;n) \msubseteq{} I
6. mc : f[x] continuous for x \mmember{} i-approx(I;n)
7. inf(f[x](x\mmember{}i-approx(I;n))) = inf\{f[x]|x \mmember{} i-approx(I;n)\}
8. sup(f[x](x\mmember{}i-approx(I;n))) = sup\{f[x]|x \mmember{} i-approx(I;n)\}
9. m : \mBbbN{}\msupplus{}
10. r(-m) \mleq{} inf\{f[x]|x \mmember{} i-approx(I;n)\}
11. sup\{f[x]|x \mmember{} i-approx(I;n)\} \mleq{} r(m)
12. x : \{x:\mBbbR{}| x \mmember{} i-approx(I;n)\}
13. r(-m) \mleq{} f[x]
\mvdash{} f[x] \mleq{} r(m)
By
Latex:
D 8
Home
Index