Nuprl Lemma : real-fun-implies-sfun-ext
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ].  real-sfun(f;a;b) supposing real-fun(f;a;b)
Proof
Definitions occuring in Statement : 
real-sfun: real-sfun(f;a;b), 
real-fun: real-fun(f;a;b), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
rleq: x ≤ y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T, 
real-fun-implies-sfun, 
real-weak-Markov, 
rneq-if-rabs
Lemmas referenced : 
real-fun-implies-sfun, 
real-weak-Markov, 
rneq-if-rabs
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-sfun(f;a;b)  supposing  real-fun(f;a;b)
 Date html generated: 
2017_01_09-AM-08_59_35
 Last ObjectModification: 
2016_11_21-PM-03_55_06
Theory : reals
Home
Index