Nuprl Lemma : real-vec-sum-empty

[n,m:ℤ]. ∀[x:Top].  Σ{x[k] n≤k≤m} ~ λi.r0 supposing m < n


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} int-to-real: r(n) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a real-vec-sum: Σ{x[k] n≤k≤m} so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  rsum-empty istype-void istype-less_than istype-top istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache isect_memberEquality_alt voidElimination hypothesis independent_isectElimination axiomSqEquality hypothesisEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:Top].    \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \msim{}  \mlambda{}i.r0  supposing  m  <  n



Date html generated: 2019_10_30-AM-08_01_55
Last ObjectModification: 2019_09_17-PM-05_17_33

Theory : reals


Home Index