Nuprl Lemma : real-vec-sum-empty
∀[n,m:ℤ]. ∀[x:Top].  Σ{x[k] | n≤k≤m} ~ λi.r0 supposing m < n
Proof
Definitions occuring in Statement : 
real-vec-sum: Σ{x[k] | n≤k≤m}, 
int-to-real: r(n), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
lambda: λx.A[x], 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
real-vec-sum: Σ{x[k] | n≤k≤m}, 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s]
Lemmas referenced : 
rsum-empty, 
istype-void, 
istype-less_than, 
istype-top, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
axiomSqEquality, 
hypothesisEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:Top].    \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \msim{}  \mlambda{}i.r0  supposing  m  <  n
 Date html generated: 
2019_10_30-AM-08_01_55
 Last ObjectModification: 
2019_09_17-PM-05_17_33
Theory : reals
Home
Index