Nuprl Lemma : real-weak-Markov-ext
∀x,y:ℝ.  x ≠ y supposing ∀z:ℝ. ((¬(z = x)) ∨ (¬(z = y)))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
member: t ∈ T
, 
real-weak-Markov, 
rneq-if-rabs
Lemmas referenced : 
real-weak-Markov, 
rneq-if-rabs
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  \mforall{}z:\mBbbR{}.  ((\mneg{}(z  =  x))  \mvee{}  (\mneg{}(z  =  y)))
Date html generated:
2017_10_03-AM-09_10_17
Last ObjectModification:
2017_09_06-PM-05_53_13
Theory : reals
Home
Index