Nuprl Lemma : real-weak-Markov-ext

x,y:ℝ.  x ≠ supposing ∀z:ℝ((¬(z x)) ∨ (z y)))


Proof




Definitions occuring in Statement :  rneq: x ≠ y req: y real: uimplies: supposing a all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  member: t ∈ T real-weak-Markov rneq-if-rabs
Lemmas referenced :  real-weak-Markov rneq-if-rabs
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  \mforall{}z:\mBbbR{}.  ((\mneg{}(z  =  x))  \mvee{}  (\mneg{}(z  =  y)))



Date html generated: 2017_10_03-AM-09_10_17
Last ObjectModification: 2017_09_06-PM-05_53_13

Theory : reals


Home Index