Nuprl Lemma : reg-seq-add_wf

[x,y:ℕ+ ⟶ ℤ].  (reg-seq-add(x;y) ∈ ℕ+ ⟶ ℤ)


Proof




Definitions occuring in Statement :  reg-seq-add: reg-seq-add(x;y) nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reg-seq-add: reg-seq-add(x;y)
Lemmas referenced :  nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality addEquality applyEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg-seq-add(x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})



Date html generated: 2016_05_18-AM-06_48_23
Last ObjectModification: 2015_12_28-AM-00_25_01

Theory : reals


Home Index