Nuprl Lemma : reg-seq-add_wf
∀[x,y:ℕ+ ⟶ ℤ].  (reg-seq-add(x;y) ∈ ℕ+ ⟶ ℤ)
Proof
Definitions occuring in Statement : 
reg-seq-add: reg-seq-add(x;y)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reg-seq-add: reg-seq-add(x;y)
Lemmas referenced : 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
addEquality, 
applyEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg-seq-add(x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})
Date html generated:
2016_05_18-AM-06_48_23
Last ObjectModification:
2015_12_28-AM-00_25_01
Theory : reals
Home
Index