Step
*
2
1
of Lemma
regularize-2-regular
1. f : ℤ ⟶ ℤ@i
2. n : ℕ+@i
3. m : ℕ+@i
4. ¬↑regular-upto(m;f)
5. ↑regular-upto(n;f)
6. v : ℕ@i
7. ¬↑regular-upto(v;f)@i
8. ∀[i:ℕ]. ¬¬↑regular-upto(i;f) supposing i < v@i
9. ¬(v = 1 ∈ ℤ)
10. ¬(v = 0 ∈ ℤ)
11. k : ℕ+@i
12. (v - 1) = k ∈ ℕ+@i
⊢ |k * ((m * (f n)) - n * ((m * (f k)) ÷ k))| ≤ (k * 4 * (n + m))
BY
{ ((Subst' k * ((m * (f n)) - n * ((m * (f k)) ÷ k)) ~ (m * k * (f n)) - n * k * ((m * (f k)) ÷ k) 0 THENA Auto)
THEN (RWO "div_rem_sum2" 0 THENA Auto)
) }
1
1. f : ℤ ⟶ ℤ@i
2. n : ℕ+@i
3. m : ℕ+@i
4. ¬↑regular-upto(m;f)
5. ↑regular-upto(n;f)
6. v : ℕ@i
7. ¬↑regular-upto(v;f)@i
8. ∀[i:ℕ]. ¬¬↑regular-upto(i;f) supposing i < v@i
9. ¬(v = 1 ∈ ℤ)
10. ¬(v = 0 ∈ ℤ)
11. k : ℕ+@i
12. (v - 1) = k ∈ ℕ+@i
⊢ |(m * k * (f n)) - n * ((m * (f k)) - m * (f k) rem k)| ≤ (k * 4 * (n + m))
Latex:
Latex:
1. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}@i
2. n : \mBbbN{}\msupplus{}@i
3. m : \mBbbN{}\msupplus{}@i
4. \mneg{}\muparrow{}regular-upto(m;f)
5. \muparrow{}regular-upto(n;f)
6. v : \mBbbN{}@i
7. \mneg{}\muparrow{}regular-upto(v;f)@i
8. \mforall{}[i:\mBbbN{}]. \mneg{}\mneg{}\muparrow{}regular-upto(i;f) supposing i < v@i
9. \mneg{}(v = 1)
10. \mneg{}(v = 0)
11. k : \mBbbN{}\msupplus{}@i
12. (v - 1) = k@i
\mvdash{} |k * ((m * (f n)) - n * ((m * (f k)) \mdiv{} k))| \mleq{} (k * 4 * (n + m))
By
Latex:
((Subst' k * ((m * (f n)) - n * ((m * (f k)) \mdiv{} k)) \msim{} (m * k * (f n)) - n * k * ((m * (f k)) \mdiv{} k) 0
THENA Auto
)
THEN (RWO "div\_rem\_sum2" 0 THENA Auto)
)
Home
Index