Step
*
of Lemma
req-iff-rational-approx
∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ]. (regular-seq(a) ∧ (a = x)
⇐⇒ ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r1/r(n))))
BY
{ (Intros THEN RepeatFor 2 ((D 0 THENA Auto))) }
1
1. [x] : ℝ
2. [a] : ℕ+ ⟶ ℤ
3. regular-seq(a) ∧ (a = x)
⊢ ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r1/r(n)))
2
1. [x] : ℝ
2. [a] : ℕ+ ⟶ ℤ
3. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r1/r(n)))
⊢ regular-seq(a) ∧ (a = x)
Latex:
Latex:
\mforall{}[x:\mBbbR{}]. \mforall{}[a:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (regular-seq(a) \mwedge{} (a = x) \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}\msupplus{}. (|x - (r(a n)/r(2 * n))| \mleq{} (r1/r(n))))
By
Latex:
(Intros THEN RepeatFor 2 ((D 0 THENA Auto)))
Home
Index