Nuprl Lemma : req-iff-rational-approx
∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ].  (regular-seq(a) ∧ (a = x) 
⇐⇒ ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r1/r(n))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_apply: x[s]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rational-approx: (x within 1/n)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
Lemmas referenced : 
regular-int-seq_wf, 
req_wf, 
nat_plus_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
less_than'_wf, 
rational-approx-property, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_inversion, 
req_weakening, 
int-rdiv_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
int-rdiv-req, 
rational-approx-implies-req, 
less_than_wf, 
accelerate-req, 
accelerate_wf, 
req_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality, 
sqequalRule, 
lambdaEquality, 
multiplyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[a:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (regular-seq(a)  \mwedge{}  (a  =  x)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  (|x  -  (r(a  n)/r(2  *  n))|  \mleq{}  (r1/r(n))))
Date html generated:
2018_05_22-PM-01_58_24
Last ObjectModification:
2017_10_26-PM-03_33_17
Theory : reals
Home
Index