Step
*
1
2
of Lemma
rpositive2_functionality
1. x : ℕ+ ⟶ ℤ@i
2. y : ℕ+ ⟶ ℤ@i
3. B : ℕ@i
4. ∀n:ℕ+. (|(x n) - y n| ≤ B)@i
5. n : ℕ+@i
6. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * (x m))))@i
7. m : ℕ+@i
8. ((B + 1) * n) ≤ m@i
9. m ≤ (n * (x m))
⊢ m ≤ (((B + 1) * n) * (y m))
BY
{ ((Using [`n',⌜B⌝] (FLemma `mul_preserves_le` [-2])⋅ THENA Auto)
THEN (RW IntNormC (-1) THENA Auto)
THEN InstLemma `mul_preserves_le` [⌜(x m) - B⌝;⌜y m⌝;⌜(B + 1) * n⌝]⋅
THEN Auto') }
1
.....antecedent.....
1. x : ℕ+ ⟶ ℤ@i
2. y : ℕ+ ⟶ ℤ@i
3. B : ℕ@i
4. ∀n:ℕ+. (|(x n) - y n| ≤ B)@i
5. n : ℕ+@i
6. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * (x m))))@i
7. m : ℕ+@i
8. ((B + 1) * n) ≤ m@i
9. m ≤ (n * (x m))
10. ((B * B * n) + (B * n)) ≤ (B * m)
⊢ ((x m) - B) ≤ (y m)
2
1. x : ℕ+ ⟶ ℤ@i
2. y : ℕ+ ⟶ ℤ@i
3. B : ℕ@i
4. ∀n:ℕ+. (|(x n) - y n| ≤ B)@i
5. n : ℕ+@i
6. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * (x m))))@i
7. m : ℕ+@i
8. ((B + 1) * n) ≤ m@i
9. m ≤ (n * (x m))
10. ((B * B * n) + (B * n)) ≤ (B * m)
11. (((B + 1) * n) * ((x m) - B)) ≤ (((B + 1) * n) * (y m))
⊢ m ≤ (((B + 1) * n) * (y m))
Latex:
Latex:
1. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}@i
2. y : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}@i
3. B : \mBbbN{}@i
4. \mforall{}n:\mBbbN{}\msupplus{}. (|(x n) - y n| \mleq{} B)@i
5. n : \mBbbN{}\msupplus{}@i
6. \mforall{}m:\mBbbN{}\msupplus{}. ((n \mleq{} m) {}\mRightarrow{} (m \mleq{} (n * (x m))))@i
7. m : \mBbbN{}\msupplus{}@i
8. ((B + 1) * n) \mleq{} m@i
9. m \mleq{} (n * (x m))
\mvdash{} m \mleq{} (((B + 1) * n) * (y m))
By
Latex:
((Using [`n',\mkleeneopen{}B\mkleeneclose{}] (FLemma `mul\_preserves\_le` [-2])\mcdot{} THENA Auto)
THEN (RW IntNormC (-1) THENA Auto)
THEN InstLemma `mul\_preserves\_le` [\mkleeneopen{}(x m) - B\mkleeneclose{};\mkleeneopen{}y m\mkleeneclose{};\mkleeneopen{}(B + 1) * n\mkleeneclose{}]\mcdot{}
THEN Auto')
Home
Index