Nuprl Lemma : cat-id-isomorphism
∀C:SmallCategory. ∀x:cat-ob(C).  cat-isomorphism(C;x;x;cat-id(C) x)
Proof
Definitions occuring in Statement : 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cat-id: cat-id(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
cat-inverse: fg=1
, 
prop: ℙ
Lemmas referenced : 
cat-id_wf, 
cat-comp-ident, 
cat-inverse_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
productEquality
Latex:
\mforall{}C:SmallCategory.  \mforall{}x:cat-ob(C).    cat-isomorphism(C;x;x;cat-id(C)  x)
Date html generated:
2017_01_09-AM-09_11_17
Last ObjectModification:
2017_01_08-PM-01_15_23
Theory : small!categories
Home
Index