Nuprl Lemma : cat-id-isomorphism

C:SmallCategory. ∀x:cat-ob(C).  cat-isomorphism(C;x;x;cat-id(C) x)


Proof




Definitions occuring in Statement :  cat-isomorphism: cat-isomorphism(C;x;y;f) cat-id: cat-id(C) cat-ob: cat-ob(C) small-category: SmallCategory all: x:A. B[x] apply: a
Definitions unfolded in proof :  all: x:A. B[x] cat-isomorphism: cat-isomorphism(C;x;y;f) exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B cat-inverse: fg=1 prop:
Lemmas referenced :  cat-id_wf cat-comp-ident cat-inverse_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache productElimination independent_pairFormation productEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}x:cat-ob(C).    cat-isomorphism(C;x;x;cat-id(C)  x)



Date html generated: 2017_01_09-AM-09_11_17
Last ObjectModification: 2017_01_08-PM-01_15_23

Theory : small!categories


Home Index