Nuprl Lemma : op-cat-arrow

C:SmallCategory. ∀[A,B:Top].  (cat-arrow(op-cat(C)) cat-arrow(C) A)


Proof




Definitions occuring in Statement :  op-cat: op-cat(C) cat-arrow: cat-arrow(C) small-category: SmallCategory uall: [x:A]. B[x] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  top: Top op-cat: op-cat(C) spreadn: spread4 small-category: SmallCategory member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  small-category_wf top_wf cat_arrow_triple_lemma
Rules used in proof :  because_Cache hypothesisEquality isectElimination sqequalAxiom hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid sqequalRule productElimination rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}C:SmallCategory.  \mforall{}[A,B:Top].    (cat-arrow(op-cat(C))  A  B  \msim{}  cat-arrow(C)  B  A)



Date html generated: 2017_01_11-AM-09_18_25
Last ObjectModification: 2017_01_10-PM-06_44_36

Theory : small!categories


Home Index