Nuprl Lemma : op-cat-arrow
∀C:SmallCategory. ∀[A,B:Top].  (cat-arrow(op-cat(C)) A B ~ cat-arrow(C) B A)
Proof
Definitions occuring in Statement : 
op-cat: op-cat(C)
, 
cat-arrow: cat-arrow(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
small-category: SmallCategory
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
small-category_wf, 
top_wf, 
cat_arrow_triple_lemma
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
isectElimination, 
sqequalAxiom, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}C:SmallCategory.  \mforall{}[A,B:Top].    (cat-arrow(op-cat(C))  A  B  \msim{}  cat-arrow(C)  B  A)
Date html generated:
2017_01_11-AM-09_18_25
Last ObjectModification:
2017_01_10-PM-06_44_36
Theory : small!categories
Home
Index